
Introduction and Historical Background 
Global crises have a significant impact on systems across the world including financial 

institutions, supply chains, travel, etc. These crises often reveal critical dependencies, protocols, 
and points of failure within and across global systems. The after-math of the 2008 financial 
crisis, for example, revealed a precarious dependency on subprime mortgages and rating 
agencies. The 1973 OPEC crisis revealed dependencies on U.S oil imports from OPEC nations. 
Similarly Covid-19 has uncovered countless key dependencies on personal protective equipment 
(PPE), emergency care resources, etc. The ability to prematurely model these risks/volatilities 
and identify interdependence effectively can help enact proactive policies rather than the 
historical trend of deploying reactive responses. 

The first step in approaching this problem is to characterize global systems. Crises like 
Covid-19 can be defined by complex adaptive systems, where the whole cannot be described 
simply by the sum of the parts. As John H. Miller succinctly puts it, “One and one may well 
make two, but to really understand two we must know both about the nature of ‘one’ and the 
meaning of ‘and.’” (Miller 2007) There are two primary motivators for this approach. First, 
global systemic risk modeled as a CAS is cognizant of emergent features allowing for 
identification of behaviors that would have otherwise been difficult to observe. Second, CAS’s 
are composed of smaller individual agents which allows for larger systems (or intersection of 
systems) to be subdivided into their smaller defining components. 
 
Fuzzy Cognitive Maps  
 
Background and Implementation 

CASs can effectively be modeled by Fuzzy Cognitive Maps (FCMs)(Tlili, Chikhi, 2012). 
Fuzzy Cognitive MFCMs combine fuzzy logic with the structure of directed graphs. Fuzzy logic 
is a subset of fuzzy mathematics where a proposition (e.g Akash is old) is resolved with a 
non-binary degree of “correctness” (typically any real values between 0 and 1 inclusive). FCM’s 
are represented by a set of nodes and edges where pairs of nodes are connected by unidirectional 
edges. Nodes represent various concepts (e.g population, law enforcement, etc) and have an 
internal fuzzy value representing a degree of the concept. Edges are weighted connections that 
indicate causality between nodes. An edge with a positive weight value indicates a positive 
causation between the two connected nodes, whereas a negative weight indicates a negative 
causation. This can be seen through Figure 1. 
 
 



 
Figure 1: Özesmi & Özesmi 2004 FCM where 5 concepts (wetlands, fish, lake pollution, income, 

and law enforcement) are connected by unidirectional weighted connections.  
 

Fuzzy Cognitive Maps with defined weights as shown in Figure 1 can be used to forecast 
future scenarios. This can be accomplished by creating a vector, , representing the initial state A t  
of the concepts at time t. Simulating the progression from t to t+1 can be achieved by updating 
the value of each concept using the formula shown in Figure 2. 
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Figure 2: Source - Learning rule (Gregor, Groumpos, 2013) 
 
 

 is the scalar weight pointing from concept j to concept i. N is the total number of concepts  w ji  
in the graph. The subscript for the vector  and  indicate the specific node being A t  A (t+1)  
referenced (a numerical index for concepts). Function  is a activation function (also called a f  

squashing function) that fits the dot product taken with  into a specific range w ∑
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(typically [0,1] or [-1,1]). Common activation functions include: sigmoid ( ),(x)f = 1
1+e −x  

hyperbolic tangent or tanh ( ), and rectified linear unit or ReLU ( ).(x) anh(x)  f = t (x) ax(0, )  f = m x  
The activation function can be chosen empirically based on performance or the context of the 
model. 
 
 

 Wetlands Fish Lake Pollution Income Law Enforcement 

Wetlands 0.0 +1 -0.1 +0.8 0.0 



Fish 0.0 0.0 0.0 0.0 0.0 

Lake Pollution -0.2 0.0 0.0 -0.2 0.0 

Income 0.00.0 0.0 0.0 0.0 0.0 

Law Enforcement 0.2 0.5 -0.5 -0.2 0.0 

Figure 3: Representing the FCM from Figure 1 in weight matrix form 
 
Defining Weight Matrices  

For an FCM to be used in forecasting, a weight matrix (e.g Figure 3) describing the 
causality between concepts must be determined. This can be realized through two methods: 
construction of the matrix through domain experts or automated learning algorithms. Using 
experts in a certain domain allows for past research and proven casualties to be represented in the 
map effectively. Tools like MentalModeler (​http://www.mentalmodeler.org/​) allow researchers 
to use a graphical interface to design semi-quantitative FCMs. Users define the relevant 
concepts, outline a weight matrix, and specify their confidence in each weight. This approach is 
particularly useful when there is limited data in the field or casualties simply cannot be 
determined through quantitative data. However, expert defined matrices make it difficult to scale 
the number of concepts in an FCM due to the high dependency on manual data analysis. Further, 
the accuracy of each model is limited by the casualties defined by experts and is vulnerable to 
various biases. 

Learning algorithms eliminate the need for expert insight by tuning weight matrices using 
data. A single sample of training data consists of two vectors: an initial and final state for each 
concept in an FCM. Time series data for each concept in a map can be used and reformatted into 
pairs of initial and final state vectors. There are a handful of training algorithms available that 
typically fall into two categories: supervised or unsupervised. FCM research over the last 20 
years has had a greater focus on unsupervised learning methods like Hebbian learning (based 
loosely on the idea that neurons that fire together wire together) and genetic algorithms. More 
uncommon FCM training methods use supervised learning with gradient descent. (See appendix 
for more details on Hebbian learning and gradient descent methods). This approach eliminates 
expert bias from a weight matrix and can scale the number of concepts more effectively. 
However working with learning algorithms requires substantial data to generate accurate weight 
values. This scale and granularity of data can be difficult to acquire for larger global systems 
(other than financial data which can be used as a proxy for various concepts). 

 
Usage/Utility of an FCM 

Once an FCM is defined with an accurate weight matrix there are countless useful 
insights that can be derived. 

○ If a learning algorithm is used, the weight matrix can be examined to identify casualties. 
○ Centrality of nodes can be calculated (e.g degree, closeness, betweenness) to determine 

how integral they are in the function of the entire graph. This can be a useful indicator in 
identifying strong interdependency and points of failure, as failure of highly central nodes 
can cause cascading changes/failures across the entire map. 

http://www.mentalmodeler.org/


○ Scenarios can be forecasted using the equation in Figure 2. A hypothetical scenario can 
be used as an initial state vector and simulated to predict the output vector at time t+1. A 
perturbation in certain concept values can be simulated to see the impact they have on the 
rest of the system. This can be used as an effective measure of volatility/stability of an 
FCM. 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

● Historical failure in systems reveals points of failure and interdependence 
○  

● Complex Adaptive Systems  
○ Emergent features 

■ Use examples from cases above 
○ Modeling it as a directed graph of causalities 

● Cognitive Maps 
○ Intro - Concepts/Connections 
○ ‘Fuzzy’ cognitive maps 

■ Expert designed 
■ Computationally generated 
■ Evaluation metrics+usage 

● Other approaches and considerations 
○ RNN/LSTM 
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